Bayesian template estimation in computational anatomy

نویسندگان

  • Jun Ma
  • Michael I. Miller
  • Alain Trouvé
  • Laurent Younes
چکیده

Templates play a fundamental role in Computational Anatomy. In this paper, we present a Bayesian model for template estimation. It is assumed that observed images I(1), I(2),...,I(N) are generated by shooting the template J through Gaussian distributed random initial momenta theta(1), theta(2),...,theta(N). The template is J modeled as a deformation from a given hypertemplate J(0) with initial momentum mu, which has a Gaussian prior. We apply a mode approximation of the EM (MAEM) procedure, where the conditional expectation is replaced by a Dirac measure at the mode. This leads us to an image matching problem with a Jacobian weight term, and we solve it by deriving the weighted Euler-Lagrange equation. The results of template estimation for hippocampus and cardiac data are presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian models in computational anatomy, neurodegenerative illnesses and Brain Clouds

I will review several statistical estimation problems which arise in the computational anatomy setting, casting three problems of statistical estimation as examples of parameter estimation in the context of many templates: (i) disease estimation, (ii) segmentation and (iii) template estimation. Then I will discuss one of the central questions in neurodegenerative diseases today, the staging of ...

متن کامل

A Bayesian Generative Model for Surface Template Estimation

3D surfaces are important geometric models for many objects of interest in image analysis and Computational Anatomy. In this paper, we describe a Bayesian inference scheme for estimating a template surface from a set of observed surface data. In order to achieve this, we use the geodesic shooting approach to construct a statistical model for the generation and the observations of random surface...

متن کامل

Bayesian Statistics in Computational Anatomy∗

Computational anatomy is the science of anatomical shape examined by deforming a template organ into a subject organ. It compares and contrasts organ shapes to inspire personalized treatments or find group differences in case-control studies. Independently of the transformation model used, the task of finding deformations between organs is a statistical task concerned with estimating parameters...

متن کامل

Stochastic Algorithm For Parameter Estimation For Dense Deformable Template Mixture Model

Estimating probabilistic deformable template models is a new approach in the fields of computer vision and probabilistic atlases in computational anatomy. A first coherent statistical framework modelling the variability as a hidden random variable has been given by Allassonnière, Amit and Trouvé in [1] in simple and mixture of deformable template models. A consistent stochastic algorithm has be...

متن کامل

Can Wavelet Denoising Improve Motor Unit Potential Template Estimation?

Background: Electromyographic (EMG) signals obtained from a contracted muscle contain valuable information on its activity and health status. Much of this information lies in motor unit potentials (MUPs) of its motor units (MUs), collected during the muscle contraction. Hence, accurate estimation of a MUP template for each MU is crucial. Objective: To investigate the possibility of improv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 42 1  شماره 

صفحات  -

تاریخ انتشار 2008